X - rays from cusps of compact remnants near galactic centres
نویسنده
چکیده
Compact remnants – stellar mass black holes and neutron stars formed in the inner few parsec of galactic centres are predicted to sink into the central parsec due to dynamical friction on low mass stars, forming a high concentration cusp (Morris, 1993). Same physical region may also contain very high density molecular clouds and accretion discs that are needed to fuel SMBH activity. Here we estimate gas capture rates onto the cusp of stellar remnants, and the resulting X-ray luminosity, as a function of the accretion disc mass. At low disc masses, most compact objects are too dim to be observable, whereas in the high disc case most of them are accreting at their Eddington rates. We find that for low accretion disc masses, compact remnant cusps may be more luminous than the central SMBHs. This “diffuse” emission may be of importance for local moderately bright AGN, especially Low Luminosity AGN. We also briefly discuss how this expected emission can be used to put constraints on the black hole cusp near our Galactic Centre.
منابع مشابه
Constraining the number of compact remnants near Sgr A ∗
Due to dynamical friction stellar mass black holes and neutron stars are expected to form high density cusps in the inner parsec of our Galaxy. These compact remnants, expected to number around 20000, may be accreting cold dense gas present there, and give rise to potentially observable X-ray emission. Here we build a simple but detailed time-dependent model of such emission. We find that at le...
متن کاملInverse Compton Emission from Galactic Supernova Remnants: Effect of the Interstellar Radiation Field
The evidence for particle acceleration in supernova shells comes from electrons whose synchrotron emission is observed in radio and X-rays. Recent observations by the HESS instrument reveal that supernova remnants also emit TeV g-rays, long-awaited experimental evidence that supernova remnants can accelerate cosmic rays up to the “knee” energies. Still, uncertainty exists whether these g-rays a...
متن کاملNearby quasar remnants and ultra-high energy cosmic rays
As recently suggested, nearby quasar remnants are plausible sites of black-hole based compact dynamos that could be capable of accelerating ultra-high energy cosmic rays (UHECRs). In such a model, UHECRs would originate at the nuclei of nearby dead quasars, those in which the putative underlying supermassive black holes are suitably spun-up. Based on galactic optical luminosity, morphological t...
متن کاملGalactic sources of high energy neutrinos
The undisputed galactic origin of cosmic rays at energies below the so-called knee around 10eV implies an existence of a nonthemal population of galactic objects which effectively accelerate protons and nuclei to TeV-PeV energies. The distinct signatures of these cosmic accelerators are high energy neutrinos and γ-rays produced through hadronic interactions. While γ-rays can be produced also by...
متن کاملAstrophysical Gamma Ray Emission Lines
We review the wide range of astrophysical observations of gamma ray emission lines and we discuss their implications. We consider line emission from solar flares, the Orion molecular cloud complex, supernovae 1987A and 1991T, the supernova remnants Cas A and Vela, the interstellar medium, the Galactic center region and several Galactic black hole candidates. The observations have important, and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006